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Abstract-A leading order solution for thermocapillary, buoyancy, and shear-driven flow within a thin, 
fixed-length, annular fluid collar is determined. The solution is based on the assumption that C/e3 = O(l), 
where C is the capillary number and E is the collar aspect ratio. In contrast to earlier models of flow within 
bridges, boundary layer matching near the end regions is not required since end walls are absent. The 
leading order velocity field is self-similar in the radial direction with the size of the similarity profiles 
determined by an unspecified surface heat flux dist~bution, an unspecified surface shear dist~bution, and 
by the unknown capillary surface shape. Conditions leading to the~ocapillary, buoyant, or shear driven 
single and multi-cellular flow are identified. The capillary surface shape is determined using a minimization 
technique, with the object function defined as the difference between known and iteratively calculated 
collar volumes. The surface and flow solutions are illustrated using an exponentially decaying surface heat 

flux and a constant external shear. 

1. INTRODUCTION 

THERMOCAPILLARY and buoyancy driven flow within 
annular fluid collars arises in a number of cir- 
c~stan~s: during drilling of materials by high 
energy density heat sources, during laser machining 
of computer chips, during wire coating operations, 
and during heating or cooling of fluid layers within 
cylindrical pores, for example. Some applications util- 
ize some form of gas assist in order to increase pen- 
etration ~pabilities or to shield the heat source or 
material surface from the surrounding atmosphere. 
The collars may be subject to various combinations of 
thermocapillary, pressure, external shear, buoyancy, 
and/or Lorentz forces. 

Most of the theoretical studies treating flow within 
fluid annuli have focused on stability questions [l-4]. 
Of this work, the last considered the~o~apillarity, 
while the second accounted for surface shear due to a 
second fluid within the annular core. A number of 
relevant theoretical studies have dealt with thermo- 
capillary driven flow or instability within liquid 
bridges (see, e.g. Sen and Davis [5] ; Xu and Davis 16, 
71; Rybicki and Florian [8, 91) Sea and Davis [s] 
used matched asymptotic expansions to determine the 
thermocapillary flow and capillary interface shape 
within a narrow bridge subject to a linearly varying 
external gas temperature. They considered the case of 
small bridge aspect ratio, E, assumed that the Reynolds 
and ~arango~ numbers were each on the order of E, 
and based their analysis on the distinguished limit 

C/s” = 0( 1), where C is the capillary number. Xu and 
Davis [6], assuming C/s = O(l), obtained similarity 
solutions for the core flow (away from end-walls) 
within thin, heated, a~symmet~c bridges. Since 
boundary layer flows within the end regions were not 
determined, order unity Re and Ma could be accom- 
modated. Rybicki and Florian [8] determined flow 
solutions within liquid bridges having order unity 
aspect ratios. Their analysis was based on an assumed, 
physically consistent capillary surface shape and on 
the assumptions that Re --+ 0 and Ma --, 0. 

The objective of the present study is to investigate 
flow and heat transfer within thin axisymmetric fluid 
collars subject to thermocapillary, buoyant and exter- 
nal shear forces. While a number of theoretical studies 
[S, 6, 81 have treated the~o~pillary and buoyant 
flow within liquid bridges, it appears that no equi- 
valent studies have been carried out concerning flow 
within collars. Since external shear forces are often 
important in collar flow (in contrast to bridge flow), 
this feature will be examined as well. Leading order 
solutions for the two-dimensional velocity and tem- 
perature fields are obtained in terms of the unknown 
capillary surface shape and unspecified external heat 
flux and shear stress distributions. A minimization 
technique is developed and tested in order to calculate 
the capillary surface shape. The model allows exam- 
ination of a range of ff ow and heat transfer phenom- 
ena associated with various buoyant, the~ocapillary, 
external shear and external heating regimes. 
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NOMENCLATURE 

A geometric parameter, equation (3) ; 

also dimensionless area, equation (48) 
A,, A, exact and candidate surface areas, 

equation (49) 
Br Brinkman number, equation (I 1) 
C capillary number, p W,/oo 
C constant, equation (26) 

@X,&z unit vectors in x and z directions 
F object function, equation (37) 
G,, Gz, G,, G4 functions comprising UC,,, 

equation (32) 
Gv Grashof number, equation (11) 
h, H dimensionless capillary surface height 
k thermal conductivity 
L* collar length 
L dimensionless length, equation (48) 

mo>m, capillary surface slopes at endpoints 
Ma Marangoni number, equation (11) 
e unit normal vector, equation (13) 

II, unit normal vector component 
P* pressure 
P dimensionless pressure, equation (1) ; 

AP*R*/2a, equation (45) 

p: external pressure 

p, pressure scale, equation (5) 
PU Prandtl number, V/CC 

4* external heat flux distribution 

e dimensionless external heat flux 
distribution, q*(z*)G,/(kAT”) 

Y* radial coordinate 
R* inside radius of cylinder 

Re, Reynolds number, equation (11) 
I unit tangent vector, equation (13) 

t, unit tangent vector component 
T* temperature 
u* radial velocity 

u: velocity component 
I/ dimensionless radial velocity, equation 

(1) 

r/, wall speed, equation (33a) 

V, dimensionless candidate volume, 
equation (38) 

V0 collar volume 
W* axial velocity 
W dimensionless axial velocity, equation 

(1) 
@i, velocity scale, equation (4) 
x* radial coordinate 
X dimensionless radial coordinate, 

equation (1) 

_* axial coordinate 
Z dimensionless axial coordinate, 

equation (1) 

Greek symbols 
thermal diffusivity 

; coefficient of thermal expansion 

:’ ,- derivative of surface tension coefficient 
with respect to temperature 

d,, Kronecker delta function 

6,) characteristic collar thickness. 
equation (2) 

AT” characteristic temperature difference, 
equation (6) 

El, c1 collar aspect ratios, equation (3) 
F ‘< approximated capillary surface heights 

at endpoints, equation (35a) 

&, convergence tolerance, equation (41) 

; 
dimensionless radial coordinate, X/ho 

dimensionless temperature, equation 

(1) 
L’ dynamic viscosity 
I kinematic viscosity 

P density 
0 surface tension coefficient, equation 

(20) 
* 

a,, stress tensor, equation (19) 

00 surface tension coefficient at reference 
temperature 

Olgr gsg, 051 surface tension coefficients 
between liquid and gas, solid and 
gas, and solid and liquid, respectively, 
equation (40) 

c dimensionless external shear stress 
distribution, zb,/(p W,) 

t external shear stress distribution 
[l +(dH/dZ)‘]--I” 

$ stream function. 

Subscripts 
min minimum 
0 zero order. 

Superscripts 
ex exact 
0,min initial guess closest to exact value 
* dimensional quantity. 

1 

2. ANALYSIS problem, the following non-dimensional quantities 

2.1. Scaling 
are introduced : 

The problem is formulated in cylindrical coor- 
dinates and is depicted in Fig. 1. For the present 
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FIG. 1. Schematic of a thin annular fluid collar within a 
cylinder. 

where R* is the cylinder’s inside radius, L* is either 
the cylinder length or the collar wavelength (when 
a series of collars exist), Tz is the maximum fluid 
temperature, T,* is a reference temperature, P,* is a 
constant external pressure, and where the rest of the 
quantities are defined below. The liquid layer thick- 
ness is characterized by 6,, which will be defined as 

where I’, is the total liquid volume. As shown in 
Fig. 1, gravity acts in the negative z-direction. Three 
geometric parameters are defined as 

The axial velocity scale W, follows by balancing vis- 
cous shear against thermocapillary stress 

PW, yrAT” 
6,- L* 

so that 

We are thus focusing on the viscous flow limit dis- 
cussed by Ostrach [lo]. The radial velocity scale, s2 W,, 
is a consequence of the continuity equation while the 
pressure scale is the lubrication pressure scale 

p =!!!5. s c 
8200 

(5) 

The temperature scale is defined as the difference 
between the maximum liquid temperature and the ref- 
erence temperature : 

AT” = T,*- T,*. (6) 

2.2. Governing equations 
Introducing the above non-dimensional variables 

and parameters into the continuity, momentum, and 

energy equations and utilizing the Bousinesq approxi- 
mation, we obtain the following : 

Continuity 

u,+ w, = E,(l +e,X)U+O(E:) 

X-momentum 

(7) 

Px = -.$Re,[UU,+ WUz]+~:Uxx+O(~$,) 

Z-momentum 

(8) 

W,,+ gO-Pz = e2Re6[UWX+ WW,] 
6 

f&l Wx-E: w,,+s:xw,+O(E:) (9) 

Energy 

-$3ZZ-Br~x+O(.52Br). (10) 

First and second partial derivatives of U, W, P, and 
0 with respect to X and 2 are denoted by subscripts 
and r*-’ has been expanded as R*-‘(1+&,X 
+&:X2. . .). The Reynolds, Grashof, Marangoni and 
Brinkman numbers are defined as 

Red = 
WS& g/IAT”G: 
-, Gr=p 

V v2 ’ 

Ma = PrRed = 
KS0 PC 
-, Br=- 

u kAT” 
(11) 

where Pr = v/m is the Prandtl number. Equations (7)- 
(9) are similar to equations derived for thermo- 
capillary and buoyancy-driven flow in a rectangular 
cavity [lo], and with the exception of terms mul- 
tiplying l/r*, have the same ordering in s2, and in 
products of s2 and Ma and ~~ and Re, as those derived 
by Sen and Davis [S]. 

2.3. Boundary conditions 
The unknown capillary surface is defined as 

X=/r(Z), o<z< 1. (12) 

The corresponding unit normal and tangent vectors 
are 

ii = (C,-&,h’&,)/N, i = &,f&#&,)/N (13) 

where N = (1 +E$Y*)‘~* and h’ = dh/dZ. The normal 
and tangential stress boundary conditions on h are 
given by 

* aijninj = -on,, (14) 

and 

@tini = --yTT,~tf--~ (15) 

where r = r(z*) is an unspecified external shear stress. 
The thermal boundary condition and no-penetration 
condition on h are given by 

kT,Tn, = q* (16) 

and 



1582 R.G. KEAXINI 

uz,n, = 0 (17) by Sen and Davis [5] and more restrictive than the 

where q* = q*(z*) is an unspecified surface heat flux. 
C’/t: = O(1) limit used by Xu and Davis [6]. Since end 

Along the cylinder wall, no-slip and isothermal wall walls are not present, however, the present limit allows 

conditions are imposed : whole-field solutions without the neod for bound- 
ary layer matching [5]. We assume solutions of the 

r[* = ii’* = 0, T* = T* II 1 1.* = R”. 0 < 9 < L*. form 
(18) 

Flux or non-isothermal conditions can be readilv i 
P= i:;‘P~,+P,+i:,P,!,-ti:?f’,,,+ ‘.’ (27a) 

imposed along the wall, depending on the circum- ( u, w, 0, I7 ] = j cl<,. W”, o,,, II,, ) 

stances. The stress tensor is given as 
+sl(l/lr,> W,,,.@,,,,/r,oJ 

$ = - P*&, + n(u?,+ u:,, (19) +i:z ; u ,,,, W,),;,,.O,,,,/l,,, j $- ” . . (271~) 
and a linear equation of state is assumed for the sur- 

face tension 
The first term in P provides the static pressure induced 
by mean surface tension. In particular. the lowest 

CT = go - ‘i’ , (T* ~ r,:) (20) order problem 

where Y,- is the temperature derivative of the surface I’_ -P 1./ - ,.,\.= 0, P , = (C‘4) ’ (‘8) 
tension, and where go is the surface tension magnitude 

at T,*. leads directly to 

Following non-dimensionalization, the normal and 
tangential boundary conditions on k become : p*-p: = 2*. 

p= f 2-o 
‘? c * ‘l ‘! i > 

[,Q’+f ‘A-‘h+F /I ]fO f! I, 

iI 

It is important to note that the lowest order (i.e. static 
c 

(21) 
pressure) term in P is independent of the assumption 
in (26). This is perhaps most easily seen by redefining 

w,+e,-h’f@z = -X.+0(&) (22) Pin (21) as P-p, where P( = (AC) ‘d) is the non- 

where C = ~1 W,io, is the capillary number and dimensional equivalent of the last equation. Note 

C = TcS,/(~W,) is the non-dimensional shear stress. that Rybicki and Florian [8] utilized a similar 

The thermal boundarv condition and no-nenetration pressure expansion in their treatment of flow within 

condition on h are given by 

0, = Q+~(K;) (23) 

and 

CT- w/i = 0 (24) 

where Q = q(-_*)G,/(kAT”). Along the cylinder wall. 

U(0, Z) = W(0. Z) = O(0, Z) = 0. 0 Q z d 1. 

(25) 

End conditions on II are discussed in Section 2.X. 

2.4. Leading order solutiorz ,fbr c2 --f 0, Re, = o(+ ‘), 

Ma = 0(&I), Br + 0 

We seek a solution for the case where i:I ---t 0, 
Re,, = o(E;‘), Ma = o(E;‘), and Bu + 0. The present 
conditions are similar to those introduced by Xu and 
Davis [6] and are less restrictive than those used by 
Sen and Davis [5] and Rybicki and Florian [8] (i.e. 
Re + 0, Ma --t 0, and in the latter case, Br = 0). The 
assumption that Br is small means that viscous dis- 
sipation is negligible. Rayleigh’s stability criterion for 
(isothermal) annular films within cylinders suggests 
that A should be greater than approximately 11271 (see 
below). 

A self-consistent solution results if 

c= ca; (26) 

where c = O(1). This distinguished limit is slightly 
less restrictive than the limit C/s4 = O(l), introduced 

bridges. 
At the next order, we have the following 

w, \\ + $@,,-- P,, , = 0 

P,, = c ‘(lz::+A ‘/I,,) 

W(0, Z) = U(0, Z) = O(0, Z) = 0 

W,,,~+O,,,xh:,+O,,~+I: = 0 on X = 

ri, ~ W&, = 0 on ‘Y = II,, 

@,> .\ = Q on X = II,,. 

(2Xa) 

(3%) 

(28C) 

(3Xd) 

(‘XC) 

(28f.gh) 

(2Xi) 

(28j) 

(2Xk) 

2.5. Leading order solution 
Conditions (28h) and (28k) are used to solve the 

energy equation (28d). The solution is 

@<,(v> Z) = Q(~,~>YI (29) 

where q = X/h,. Eliminating pressure between the Z- 
and X-momentum equations (28a) and (28~). using 
(29), introducing (2%). and using the relationship 

I% (7, 

J W,dX = 0 (30) 
(1 

we arrive at the solution for W,, 
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(31) 

Introducing (31) into the continuity equation, (28b), 
and imposing condition (28g), we obtain the solution 
for U, 

where 

U,(v,Z) = G,+Gz+Gx+G.+ (32) 

Equations (31) and (32) are similarity solutions in 
the normalized radial coordinate q. Xu and Davis [6] 
also obtained similarity solutions in their treatment of 
flow within liquid bridges. It is impo~ant to note 
however, that since h,(O) = k,(l) = 0, then to first 
order, zero velocity conditions hold at the end points. 
Thus, at leading order, boundary layer matching is 
not necessary. Note, if yT > 0 (co~esponding to 
thermocapillary stresses acting from cool to warm 
regions), then each coefficient of (Qh,,)’ and (QhJ” in 
(3 1) and (32) must be multiplied by - 1. 

2.6. Characteristics of leading order solution 
The leading order velocity solution in (31) and (32) 

encompasses a wide range of possible flow regimes. 
For example, in the limit ] (G~Q/~e~)/(~ + (Q!rJ’)l -+ 0, 
the flow is determined by thermocapillary and/or 
external shear stresses. In this limit, either multi-cell 
or single-cell flow can arise, depending on how 
(C+ t&Q)‘) varies with Z. In multi-cell flow, 
(Z+ (h,Q)‘) = 0 at n points Z,, Z,, . . . ,Z, on 
0 < Z g 1. In this case, n f 1 counter-rotating cells 
(toroidal vortices) appear, each separated by hori- 
zontal stagnation streamlines lying on Z = Z,-Z,. In 
particular, since W, - (C + (h,Q)‘)h,f - 3/4q2 - r/2), 
then at each Z,, IV&$, Z,) - 0. From the kinematic 
condition (24) U,(h,, Z,) also equals zero. Thus, from 
the stream function corresponding to W, and U,, 

I- ~t~+th~Q)~)h~t~2-~3) (324 

it is apparent that the corresponding stagnation 

streamlines are horizontal. It should be noted that 
when C = 0, the dividing streamlines coincide with 
critical points in the surface temperature distribution, 
@,h,. Note too that in this latter case the direction of 
rotation in each vortex is reversed if y= > 0 (refer to 
Section 2.5). 

Single-cell flow in the limit ](GrQ/Re# 
(~+(Qh,)‘)] -+ 0, arises if (~+&,Q>‘) f 0 on 
0 < Z < 1. In this case, the flow is dominated by a 
single vortex with the direction of rotation determined 
by the sign of (C+(h,Q)‘). In both single-cell and 
multi-~11 flows, W, is parabolic in 9 (within any given 
cell), having a vertex at q = l/3, passing through zero 
at rl = 2/3, and reaching its maximum magnitude at 
the capillary surface. 

In the limit ](C+ (Qh~)‘)/(G~Q~Re~}l + 0, the flow 
is buoyancy dominated. Similar to the limit of shear- 
driven flow, single- or multi-cell flow can arise depend- 
ing on the behavior of Q(Z). Multiple cells occur if 
Q = 0 on 0 < Z < 1 (again separated by horizontal 
streamlines), while single cells arise if Q # 0. In any 
given cell, W, is cubic in y, having a vertex at rl = l/4, 
a zero crossing at q = (15-J33)/16, and a maximum 
magnitude at the surface. On heated intervals (Q > 0), 
W, is negative at q = l/4 and positive at the surface, 
with the signs changing on cooled intervals. In this 
limit it is interesting to note that buoyant effects in 
microgravity can be damped (amplified) by use of a 
small (large) axially uniform heat source. 

The leading order temperature solution in equation 
(29) corresponds to the conduction limit. Inter- 
estingly, the collar’s thinness prevents fluid motion 
from playing a role in leading order heat transfer, even 
though Res and/or Ma may be large (but not so large 
that &Red or &Ma = U(1) ; see equations (9) and (10)). 
Since the leading order temperature varies linearly 
across the collar, heat flux is purely radial so that the 
wall flux at any Z is equal to the corresponding flux 
across the capillary surface. 

2.7. Compurison with solution for buoya~t~u~ within 
a driven slot 

We demonstrate the consistency of the preceding 
formulation by comparing the solution with a similar 
solution obtained by Arpaci and Larsen [ll]. They 
solved the problem of buoyant Couette-Poiseuille 
flow and heat transfer within a wall-driven, differ- 
entially heated, infinitely long vertical slot. The zero- 
order governing equations, (28a)-(ZSd), are identical 
to those given explicitly and implicitly by Arpaci and 
Larsen [l I]. We recover their problem and solution 
by first replacing the boundary conditions given by 
equations (2%) and (28k) with the conditions 

I+‘$,, Z) = -U,, O,(h,, Z) = Oz (33a) 

(where O2 > O), then by noting that the normal stress 
boundary condition (28e) does not apply, and finally 
by setting h, equal to a constant. The resulting solu- 
tion is given as 
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(33b) 

(33c) 

and 

WC = - 120&i g [2il’ - 3y’ + r/l + ri,[ - 3$ + 2qJ 
0 

(33d) 

where again ~7 = X;fr,. This is identical (in non-dimen- 
sional form) to Arpaci and Larsen’s solution (in the 
case where their cool wall temperature is set equal to 
the reference temperature). As shown in the earlier 
work, the first term in equation (33d) provides the 
velocity induced by buoyancy while the second term 
gives the velocity induced by external shear. 

Comparing the solution in equation (33d) with that 
in equation (3 1). we find that for buoyancy dominated 
flow, W, changes sign at y = 0.5 and r) = 0.58 within 
the vertical slot and fluid collar, respectively. For 
shear-driven flow, the sign changes occur at q = 213 
in both cases. 

2.8. Cupillury su&ce solutinn 
The zero-order velocity field can be determined 

once the surface shape is known. The governing equa- 
tion for the surface shape follows by differentiating 
the normal stress equation, (28e), and then by using 
the solutions for IV, and 0, in the Z-momentum equa- 
tion, (28a). The result is 

We will focus on the case of a partially wetting collar 
within a cylinder of length L*. The corresponding 
boundary conditions and volume constraint are : 

and 

h,(O) = h,(l) = 0 (3) 

h, dZ = ; (36) 

where equation (36) is correct to O(Q) and where the 
l/2 follows from equation (2). Note that integrating 
equation (28a) in order to obtain PO for use in equa- 
tion (28e) is argued against since this leads to an 
integral equation in h,. 

In order to solve equation (34). we utilize a min- 
imization technique in combination with a shooting 
method. In particular, we define an object function, 
F, as 

where V, is a candidate volume The program was tested against two known soiu- 

(37) 

vc = h, dZ. (38) 

Since two of the three boundary conditions on cqua- 
tion (34) are known (conditions (35)), and since a 
volume constraint must be met, I’, and thus F can be 
considered a function of one of the two unknown 
contact angles 

We will assume that 

F = Ffm,) (39) 

aithough the results discussed below were found to be 
independent of whether F = F(m,) or F = F(m,,). 

The solution algorithm is as follows. 
(1) Initially, two guesses are made for 91,. Sub- 

sequent values of nz, are determined by the simplex 
algorithm (see, e.g. Spendly ei al. [ 121; Press rt ul. 

[1X). 
(2) In order to treat the singular points 2 = 0 and 

I in equation (34), we use a shooting method and 
integrate away from the end points to a fitting point 
(Z = 0.5). Since the fluid is partially wetting (n?) # 0, 
f7z2 f 0). we approximate the boundary conditions in 
equation (35) with 

h,(O) = k”( 1) = i:, (35a) 

where i:, = lo-” for all calculations. Assuming no fluid 
film adjacent to the contact lines, Young’s equation 
applies at the endpoints : 

where (T,~, gsg and g,, are the surface tension coemcienta 
between the liquid and gas, solid and gas, and solid 
and liquid, respectively. By Taylor expanding h, and 
using (40) or by introducing the strained coordinate 
,* - Z/E (or [-(Z- 1)/e for Z -+ 1) into equation (34), i- 
it is seen that h, -Z (or h, - I -Z) near the end points. 
Thus, for partially wetting fluids integration of equa- 
tion (34) can begin at Z values near 0 and I, or equi- 
valently by use of the approximate conditions given 
in equation (35a). Each updated value of m, is used 
along with the conditions in equation (35a) to inte- 
grate equation (34). 

(3) The resulting surface solution allows calculation 
of V, based on equation (38). 

(4) If a convergence criterion 

F< sv(= 10-q 141) 

is satisfied, then the corresponding surface solution 
is used to calculate the velocity field. Otherwise, the 
simplex algorithm adjusts m, and the program returns 
to step 2. Corriel et al. [14] used a similar approach, 
based on Newton-Raphson iteration, in their solution 
of static capillary surfaces. 
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tions : (1) the exact solution of equation (34) in the 
case where A = 1; Gr/Res = Q = X = 0, and (2) the 
solution of the Young-Laplace equation in the case 
of zero interfacial pressure jump (cycloid solution). 
The simplex algorithm requires two initial guesses for 
m, and the success of the procedure is largely deter- 
mined by how close the guesses are to the actual value, 
m;‘i. In the first test case, the exact solution to equation 
(34), subject to the given simplifications is 

/l,(Z) = 5.399 (tan (0.5) sin (Z)+cos (Z) - 1). (42) 

Denoting mytin as the initial guess in closest proximity 
to my, it was found that accurate solutions, defined 
by the condition 

max (lhy’ -h,]/h~) < 10-Z (43) 

(evaluated at 8000 positions between the end points) 
could be obtained for 

/m”;‘“‘“-mm;“/ < N 300 (44) 

(where my = -2.950). Thus, the minimization pro- 
gram proved very robust in this case. 

In the second test case, the Young-Laplace equa- 
tion can be written as 

3d2H x _p x z-Zj- (45) 

where H = h*{R*, P = dP*R*@, and 
x = [ 1-k (dH/dZ)‘] - I/*. In the case of zero interfacial 
pressure jump, the solution of equation (45) is a cat- 
enoid : 

If= H,cosh $ 
0 

(46) 
0 

where 

H(0) = Ho, H(L) = 1. 

In order to test the program against this solution, 
we rearrange and then differentiate equation (45) to 
arrive at a third order equation in H: 

H”--25F f(1 +(H’)‘)$ = 0. (47) 

The solution (46) can describe the shape of an annular 
film suspended between two circular rings (of radius 
R*). In this case, solutions have to satisfy an area 
constraint 

l. 
A = 2n 

.I” 
H(l +H;)“2dx 

0 
(48) 

so that an appropriate object function is 

where 

A, = 27rH,[L/H,, + f sinh (2L/H,J]. 

(49) 

For Ho arbitrarily set equal to 0.5 (L = 0.5 coshh’ 
(2)), solutions satisfying equation (43) followed for 

]@m’n --my/ < * 1.3 

where m’; = H(L) = 1.732. 

(50) 

The program failed to converge to a minimum in 
F, i.e. failed to satisfy condition (41), for initial guesses 
lying outside the approximate ranges given in equa- 
tions (44) and (50). Thus, every test run leading to a 
minimum in F also satisfied equation (43). Generally, 
equation (43) was well satisfied, with relative differ- 
ences between calculated and exact solutions being on 
the order of 1O-3-1O-s over approximately 90% of 
the intervals 0 < Z < 1 (first case) and 0 < 2 < L 
(second case). As would be expected, the relative accu- 
racy of the solutions increased with decreasing E,. 

3. RESULTS AND DISCUSSION 

3.1. Example : expone~tia~l~~ decaying heat sowce 
The solution given in equations (31)-(32) is stated 

in terms of two unspecified functions, the surface heat 
flux, Q(Z), and the external shear distribution, Z(Z). 
We will specify that 

Q(z) = Qoexpf4- 01, WY = x0 (511 
where Q0 and &, are constants. An exponentially 
decaying heat flux allows examination of flow and 
heat transfer behavior ranging from that induced by 
an approximately constant heat flux (c -+ 0) to that 
produced by a strongly decaying flux. The constant 
stress assumption is satisfied when (Re,A)-‘I2 1. 
where Re, (= UicR*Jvg) is the external flow Reynolds 
number and A = R*/L*. The velocity and tem- 
perature solutions in equations (29), (31) and (32) are 
fairly general so that a range of external flow and heat 
transfer conditions can be accommodated. 

For the present example, we arbitrarily define the 
reference flow as the one corresponding to c = 1, 
c = 0.1, Q0 = 0.01, Gr/Re, = 1, A = 1, and C = 0. 
Solutions of equation (34) were obtained for 
0 < Gr/Res C lo4 (yT < 0), 0 < c < 100, 0 < (? < 1, 
0 < Q,, < 1,O 6 X < 1. Referring to Fig. 2(b), we see 
that the reference flow is dominated by thermo- 
capillarity. Since (~~~)/(Gr/Re~)Q = ho+O.lh, how- 
ever, buoyancy will be important where h’, 1. The 
effect of increasing buoyancy is shown in Fig. 2, where 
Fig. 2(b) depicts the reference flow, and Figs. 2(c)-(f) 
correspond to Gr/Res = 10, 100, 1000, and 10000, 
respectively. Figure 3 shows a similar progression of 
Gr/Re, in the case of positive yT. The flows in Figs. 
2(b) and 3(b) are thermocapillary-driven, with the 
flow direction within each counter-rotating cell deter- 
mined by the sign of yT. Since the surface stagnation 
point occurs where (&Q)’ = GrQ@l2ReS (refer to 
equation (31)), then for Gr/Re, _ 1 and Q0 = 0.01, 
the stagnation streamlines approach the point of 
maximum surface temperature. When Gr/ Re, 
increases to 10 (Figs. 2(c), 3(c)), one cell becomes 
larger than the other, with the larger cell produced by 
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4 
FIN. 2. Effect of Gr:Re,. c = I. c = 0.1, Qc) = 0.01, X = 0. 7., < 0. (a) Isotherms for Cr: Re,> = I. Velocity 
fields for: (b) GriRe,, = I. (c) GrjRc,, = IO, (d) GrjRe,) = 100, (e) Gr/Re, = 1000, and (f) Gr/Re, = IO 000. 

(g) Isotherms for GrjRe,, = 10000. Isotherms corresponding to cases (c))(e) are similar to (a). 

complementary action of thermocapillarity and buoy- 
ancy. Similarly, the small cells occur in the regions 
where buoyancy and thermocapillarity are in com- 
petition. When Gr/Re, = 100, the Ilow is buoyancy 
dominated. Note, however, that the stagnation point 
condition ((h,,Q)’ = GrQh~/12Recy), is still satisfied, as 
evidenced by the small vortices in the upper (r, > 0) 
and lower corners (:+ < 0). At Gr/Reb = 1000, 

thermocapillary-driven vortices are almost completely 
suppressed, with the slight bulge within the collar 
becoming pronounced when Gr/Re,$ reaches 10000 
(Fig. 2(f)). Since Gr/Re, = pgf16,L*/yT then the bulg- 
ing that occurs at large Gr/Re, could be associated 
with increasing collar thickness or length, or with 
decreases in y, due to surfactants, for example. 
Clearly, the progression of shapes in Fig. 2 could 
also be associated with changes in gravity. Note that 

convergent solutions could not be obtained in the case 
of Gr/Re,, = 10000, and ;j-r > 0. 

The effects of decay rate on the reference flow are 
shown in Fig. 4. As c increases, the point of maximum 
surface temperature shifts upward toward 2 = 1 while 
the maximum temperature decreases. At any given Z, 
Q decreases with increasing c so that for approxi- 
mately fixed wall-to-surface distance and fixed wall 
temperature, the corresponding surface temperture 
must also decrease (since 0, corresponds to the con- 
duction limit). When c = 0.1. the isotherms are essen- 
tially parallel to the isothermal wall. However, when 
c = 10, heat transfer is concentrated within the upper 
portion of the collar with the lower half of the collar 
remaining essentially isothermal. Since the flow is 
thermocapillary-driven (IGrQ/Res,‘(hoQ)‘\ l), the 
horizontal stagnation streamline separating the upper 
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FIG. 3. Effect of Gr/Re,. c = 1, c = 0.1, Q0 = 0.01, Z = 0, yT > 0. (a) Isotherms for Gr/Re, = 1. Velocity 
fields for: (b) Gr/Re, = 1, (c) Gr/Re& = 10, (d) Gr/Re, = 100, and (e) Gr/Reb = 1000. Isotherms cor- 

responding to cases (c)-(e) are similar to (a). 

and lower cells moves upward with the maximum 
surface temperature. Due to steepening surface tem- 
perature gradients with increasing c, maximum flow 
speeds, located on the surface, increase with decay 
rate. Similar results, with the exception that flow 
directions reverse, follow when yT > 0 (results not 
shown). 

The effect of surface shear stress, X, on the reference 
flow is shown in Fig. 5. As X increases from 0.001 to 
0.01, thermocapillary flow gives way to shear-driven 
flow. For X = 0.001 and 0.01, the stagnation point 
condition, (X+ (h,Q)‘) = GrQh~/12Re6, can be satis- 
fied, while the flow becomes uni-cellular and shear- 
driven for C = 0.1 and 1. Again, since l(GrQ/ReJ 
(C+(h,Q)‘)l is small, the cells (when X = 0.001, 0.01) 

are separated by horizontal stagnation streamlines. 
Figure 6 shows the effect of increasing buoyancy when 

C = 0.1. For GelRe, = 1 and 10, the flow is shear- 
driven. However, when Gr/Re& reaches 100, buoyancy 
becomes prominent, and a counter-clockwise vortex 
appears near the wall. Although not resolved in the 
streamline plot, two clockwise-rotating vortices are 
apparent in the vector plot, located above and below 
the wall vortex. Finally, at Gr/Reb = 1000, the flow is 
buoyancy-dominated with the effects of external shear 
apparent only in the corners. 

As discussed in Section 2.6, multi-cellular buoyancy 
driven flow in the limit 1 (C + (Qh,,)‘)/(GrQ/ReJ 1 + 0, 
arises if Q changes sign (say at 2 = ZJ anywhere 
along the capillary surface. In this case, by inspection 
of equation (32a), neighboring cells rotate in opposite 
directions due to the sign change in Q. Moreover, since 
W, and U, - 0 at the point (h,(Z,),ZJ (equations (31) 
and (32)), and since W, - 0 along the line Z = Z,, 
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FIG. 4. Effect of decay rate C. Gr/Red = I, c = 1, c = 0.1, Qn= 0.01, ZX = 0, yr x 0. First row, showing 
(left to right) Bow field, streamlines, and isotherms, corresponds to c = 0.1. Second row corresponds to 

c = 1. Third row cm-responds to c = IO. 

then each counter-rotating cell pair is divided by an though fundamentally different driving forces (surface 

essentially horizontal stagnation streamline (lying on versus volume) operate in each case. The criteria dis- 

Z,). Thus, multi-cellular thermocapiltary and buoyant cussed above can be used to differentiate between 

flow can display very similar characteristics even these limits. 
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(a> 

:c> 

(b) 

FIG. 5. Effect of external shear stress C. Gr/Re* = 1, c = 1, c = 0.1, Q0 = 0.01, yT < 0. Velocity fields and 
streamlines for (a) C = 0.001, (b) X = 0.01, (c) C = 0.1, (d) X = 1. Isotherms in all cases are similar to 

those in Fig. 2(a). 

Although Everett and Haynes [15] studied the sta- is approximately applicable to long, thin, annular col- 
bihty of static annular unduloids, it appears that no lars, it is not known how collar stability is affected by 

investigations have been carried out on the stability non-isothermal conditions. 
of non-stagnant fluid collars. Rayleigh’s stability cri- 
terion [16] for thin, isothermal, annular films within 
cylinders states that films are stable to wavelengths 

4. CONCLUSIONS 

less than 2na*, where a* is the radius of the film. The principal results of this study are summarized 
Although it seems reasonable to expect that this limit as follows. 



FIG. 6. Effect of varying Gr/Re, when IZ is non-zero. ii = 1, c = 0.1, Q. = 0.01, Z = 0.1, ‘J, <: 0. Velocity 
fields and streamlines for (a) Gr/Re, = I, (b) GriRq = IO. (c) Gr/Re,, = 100, (d) GrlRe,, = 1000. Isotherms 

in all cases are similar to those in Fig. 2(a). 

1. Radial conduction through the collar constitutes 
the leading order heat transfer mechanism. Although 
fluid motion may be significant, i.e. the film Reynolds 
and/or Marangoni numbers may be of order one, 
conduction predominates due to the collar’s thinness. 

2. The leading order velocity field is self-similar, 
both along the length of the collar in the case of uni- 
cellular flow and within each cell in the case of multi- 

celiular flow. However, since the velocity field is also 
nonlinearly dependent on capillary surface shape and 
external heat and shear distributions, a wide range of 
flow behavior can arise. 

3. Thermocapillary (and/or shear driven) flow 
occurs when GrQ/Re, is much smafler than (Qh,)’ 
(and/or Z). In this case, counter-rotating cells appear 
if Cf (@I,) = 0 at any point 2, on the capillary 
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surface. Each pair of cells is divided by a horizontal 

stagnation streamline that passes into the stagnation 

point at (h,(Z,), Z,). The number of cells that appear 
is one greater than the number of zeros in 
(C + (Qh,)‘)lx=,,, (including uni-cellular flow). 

4. Buoyancy driven flow arises when GrQlRe* 

Z + (Q&)‘. In this limit, uni-cellular flow exists as long 
as Q(Z) does not change sign. However, if heat is 
added and removed over various portions of the capil- 
lary surface, then multi-cellular, buoyancy driven flow 
appears. Each resulting pair of counter-rotating cells 
is again separated by a horizontal stagnation stream- 

line that passes into (h,(Z,),Z,) (where Q(Zi) = 0). 
Similar to the thermocapillary regime, the number of 
buoyant cells appearing is one greater than the num- 

ber of zeros in Q. 
5. A numerical method was developed and tested in 

order to calculate the capillary surface shape. The 
method is fairly robust and could be readily applied 
to other 2-D capillary surface calculations. 
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